
Page 6 FoxRockX March 2011

In my last article, I demonstrated the Object and
Collection Inspector, a new tool I built to overcome
the VFP Debugger's weaknesses in working with
collections. This time, I'll open the hood and cover
some of the issues I encountered in building the
tool.
As I said last time, this tool is a work in progress.
Since that article was written, I've added some
functionality, so before I dig in, let me show you
the additions. The latest version of the tool, as well
as the complete source code, is included in the
downloads for this article.

New tricks
The most significant change in the current version
of the Object Inspector (included in this month's
downloads) is the addition of Refresh capability.
Originally, the Object Inspector displayed the
hierarchy it found and never changed that hierarchy.
Now, there's a toolbar with a Refresh button. Click
that button (or press F5) and the hierarchy is rebuilt.
Figure 1 shows the Object Inspector with the new
toolbar.

The Inspector also has two additional ways to
navigate. First, you can double-click or press Enter
on an object property in the right pane to jump to
that object in the treeview. Second, there's now "Go
Back" functionality. That is, the tool keeps track of
the items to which you navigate and you can return
to a previously selected item. The toolbar has a "Go
Back" button, but the backspace key offers the same
capability.

The Value column of the grid now has Tooltips
that show the Value. That's most useful when the
Value is larger than the cell.

There's one other functionality change that will
be apparent when you run the tool. In the previous
version, the treeview opened showing only the
root node. Now that node is expanded when the
Inspector opens, as in Figure 1.

The initial challenge—failed
When I first envisioned building a collection
inspector, I planned to look in memory and find all
the collections (or all the objects) and display them
in the tool. I even wrote code to parse the results
of LIST MEMORY and create a list of objects to
display.

Then, I hit reality. Although I could build such
a list, I had no way to access those objects. If they
were properly declared as local variables, they'd be
out of scope inside the tool.

I asked around and no one I spoke to knew of
a way around that problem. So I realized that I'd
have to pass the root object to the tool, so that it
would be in scope.

The starting point
From the beginning, I saw the tool using a Treeview
control to represent the hierarchy of objects. I
quickly realized that the Explorer form classes that
Doug Hennig described in the November, 2008,
March, 2009 and May, 2009 issues would be a great
starting place. A review of those articles convinced
me that the appropriate form class to start with was
sfExplorerFormTreeview.

This form class has a treeview in the left
panel (it's actually a container object containing a
treeview, an imagelist and some other things) and
a tabless pageframe in the right panel. The treeview
is driven by a cursor; the container has an abstract
method called FillTreeViewCursor to fill the cursor.
The cursor has a field to indicate which page of the
pageframe should be displayed when a particular
item is chosen. Doug recommends populating the
pages by creating a container class for each.

Filling the cursor
So, the first step in creating my form was to
populate the FillTreeViewCursor method of the
oTreeViewContainer object. The vast majority of
the code I wrote was somehow involved in this
process. I needed to fill a cursor with the list of

Inside the Object Inspector
Starting with a good framework makes building a new tool much easier, but there are still plenty of
challenges.

Tamar E. Granor, Ph.D.

Figure 1. A new toolbar in the Object Inspector gives you
access to Refresh and Go Back capabilities.

March 2011 FoxRockX Page 7

items to show in the tree. That required traversing
the entire object hierarchy and creating a record in
the cursor for each collection, collection member,
and object property. I wrote recursive code to do the
drilldown and quickly found a serious problem.

My code worked for simple hierarchies, but as
soon as I tested a hierarchy that included circular
references, I had infinite recursion. Obvious, once I
thought about it.

The solution is to keep track of what items we've
already visited, and before adding an object, check
whether we've seen it before. I created a collection
to hold those items, and added code to do the
checking. I also added an additional field to contain
the ID of the referenced item to the cursor filled
by the method. Fortunately, Doug's architecture
made adding the field as easy as modifying a single
property: oTreeViewContainer.cCursorStructure.

Listing 1 shows the code in FillTreeViewCursor.
(Code to do some logging for debugging purposes
is omitted from all of the following.) The method
first creates the collection to hold the list of nodes
visited. Then, it examines the root object (passed as a
parameter to the form and stored in the form's oRoot
property in the Init method). That object is added
to the cursor. If the root object is a collection, the
form's AddCollectionMembersToTreeViewCursor
is called. If it's anything else, we instead call the
FindObjectPropertiesForTreeViewCursor method.

Listing 1. The Treeview container's FillTreeViewCursor method
starts the process of building the cursor of items to show in the
tree.
* Set up the collection to track items we've
* seen, to avoid infinite recursion
ThisForm.oItemsVisited = ;
 NEWOBJECT("colItemsVisited", ;
 "ItemsVisited.PRG", "", ThisForm)
ThisForm.oItemsVisited.lAddToObject = ;
 ThisForm.lAddKeys

* First, the root item

IF PEMSTATUS(ThisForm.oRoot, "BaseClass", 5) ;
 AND ;
 UPPER(ThisForm.oRoot.BaseClass) = ;
 "COLLECTION"
 INSERT INTO (This.cCursorAlias) ;
 (ID, TYPE, TEXT, ;
 IMAGE, SORTED, PAGE, ;
 NODEKEY, REFID) ;
 VALUES ;
 ("ROOT" , "TOP", ThisForm.cRootName, ;
 "Collection", .F., 1, ;
 This.GetNodeKey("TOP", "ROOT"), "")
 ThisForm.oItemsVisited.AddItemVisited(;
 ThisForm.oRoot, "", "ROOT", "TOP")
 ThisForm.;
 AddCollectionMembersToTreeViewCursor(;
 ThisForm.oRoot, "ROOT", "TOP", ;
 This.cCursorAlias)
ELSE
 INSERT INTO (This.cCursorAlias) ;
 (ID, TYPE, TEXT, ;
 IMAGE, SORTED, PAGE, ;
 NODEKEY, REFID) ;
 VALUES ;

 ("ROOT" , "TOP", ThisForm.cRootName, ;
 "Class", .F., 2, ;
 This.GetNodeKey("TOP", "ROOT"), "")
 ThisForm.oItemsVisited.AddItemVisited(;
 ThisForm.oRoot, "", "ROOT", "TOP")

 ThisForm.;
 FindObjectPropertiesForTreeViewCursor(;
 ThisForm.oRoot, "ROOT", "TOP", ;
 This.cCursorAlias, 1)
ENDIF

RETURN

AddCollectionMembersToTreeViewCursor, as
its name suggests, loops through a collection and
adds each of its members to the cursor. The code is
shown in Listing 2.

For each member, the first thing the method
does is build a label and a unique key to identify
the item. It then figures out whether this is an object
and, if so, whether it's a collection. For any object,
we check to see whether we've already visited this
object. If so, we categorize it as "Previous" and stop
drilling down. If not, we add this item to the cursor,
and if it is an object, drill down.

Listing 2. The AddCollectionMembersToTreeViewCursor loops
through a collection and adds each member to the cursor, drill-
ing down as appropriate.
LPARAMETERS oCollection, cParentKey, ;
 cParentType, cAlias, nLevel

IF PCOUNT() < 5
 nLevel = 1
ENDIF

* Make the compiler happy
EXTERNAL ARRAY oCollection

* Now, the members
LOCAL nItem, oObject, cKey, cLabel, ;
 lIsClass, cID, cItemType, nPage, ;
 cRefID, lIsCollection

FOR nItem = 1 TO oCollection.Count
 cLabel = "Item[" + TRANSFORM(m.nItem) + "]"
 cKey = oCollection.GetKey(m.nItem)
 IF NOT EMPTY(m.cKey)
 cLabel = m.cLabel + "/" + m.cKey
 ENDIF
 cID = m.cParentKey + "/#" + ;
 TRANSFORM(m.nItem)

 lIsClass = ;
 (VARTYPE(oCollection[m.nItem]) = "O")

 * If it's a class, check whether it's a
 * collection
 IF m.lIsClass
 lIsCollection = ;
 (PEMSTATUS(oCollection[m.nItem], ;
 "BaseClass", 5) AND ;
 UPPER(oCollection[m.nItem].BaseClass);
 = "COLLECTION")
 ENDIF

 * If this is an object, check whether it's
 * already in the items we've visited. If so,
 * categorize it differently and don't
 * drill down.
 cRefID = ""

Page 8 FoxRockX March 2011

 IF m.lIsClass
 cRefID = This.oItemsVisited.GetItemKey(;
 oCollection[m.nItem])
 IF NOT EMPTY(m.cRefID)
 cItemType = "Previous"
 nPage = 4
 ELSE
 IF m.lIsCollection
 cItemType = "Collection"
 nPage = 1
 ELSE
 cItemType = "Class"
 nPage = 2
 ENDIF
 ENDIF
 ELSE
 cItemType = "Nothing"
 nPage = 3
 ENDIF

 INSERT INTO (m.cAlias) ;
 (ID, PARENTID, PARENTTYPE, ;
 TYPE, TEXT, IMAGE, ;
 SORTED, PAGE, REFID, ;
 NODEKEY) ;
 VALUES ;
 (m.cID, m.cParentKey, m.cParentType, ;
 "ITEM", m.cLabel, m.cItemType, ;
 .F., m.nPage, m.cRefID, ;
 This.oTreeViewContainer.GetNodeKey(;
 "ITEM", m.cID))

 IF m.lIsClass AND m.cItemType <> "Previous"
 This.oItemsVisited.AddItemVisited(;
 oCollection[m.nItem], m.cParentKey, ;
 m.cID, "ITEM")
 ENDIF

 * Is this member a collection?
 IF m.cItemType = "Collection"
 This.;
 AddCollectionMembersToTreeViewCursor(;
 oCollection[m.nItem], m.cID, "ITEM", ;
 m.cAlias, m.nLevel + 1)
 ENDIF

 * More likely is that one or more
 * properties are collections or objects.
 IF m.cItemType = "Class"
 This.;
 FindObjectPropertiesForTreeViewCursor(;
 oCollection[m.nItem], m.cID, "ITEM", ;
 m.cAlias, m.nLevel + 1)
 ENDIF

ENDFOR

FindObjectPropertiesForTreeViewCursor
(shown in Listing 3) looks inside a given object
and adds any properties that reference objects
to the cursor. This method uses AMEMBERS() to
get a list of the object's properties, and then loops
through that list. If the property is an object, it
builds a reference to that object. Then, it calls the
appropriate method to add that object to the cursor
and drill down.

This method skips over two kinds of objects it
encounters, COM objects and the GDIPlusX root
object. That is, the tool can't drill into those object
types.

Listing 3. FindObjectPropertiesForTreeViewCursor goes
through the list of properties for an object. If any refer to ob-
jects, it calls the appropriate method to add them to the cursor.
LPARAMETERS oObject, cParentKey, ;
 cParentType, cAlias, nLevel

LOCAL aProps[1], nPropCount, nProp, ;
 oChildObject

nPropCount = AMEMBERS(aProps, m.oObject, 0)
FOR nProp = 1 TO m.nPropCount
 IF TYPE("oObject." + aProps[m.nProp]) = "O"
 oChildObject = ;
 EVALUATE("oObject." + aProps[m.nProp])
 * Want to omit COM and null objects
 IF NOT ISNULL(m.oChildObject)
 DO CASE
 CASE PEMSTATUS(m.oChildObject, ;
 "BaseClass", 5) ;
 AND ;
 UPPER(oChildObject.BaseClass) =;
 "COLLECTION"
 This.;
 AddCollectionPropertyToTreeViewCursor(;
 m.oChildObject, ;
 aProps[m.nProp], m.cParentKey, ;
 m.cParentType, m.cAlias, ;
 m.nLevel + 1)
 CASE ALLTRIM(COMCLASSINFO(;
 m.oChildObject, 5)) = "1"
 IF NOT PEMSTATUS(m.oChildObject, ;
 "Name", 5) ;
 OR ;
 NOT UPPER(m.oChildObject.Name) = ;
 "XFCSYSTEM"
 * Omit GDIPlusX stuff to avoid
 * trouble
 This.;
 AddObjectPropertyToTreeViewCursor(;
 m.oChildObject, ;
 aProps[m.nProp], m.cParentKey, ;
 m.cParentType, m.cAlias, ;
 m.nLevel + 1)
 ENDIF
 OTHERWISE
 * COM object. Don't add it.
 ENDCASE
 ENDIF
 ENDIF
ENDFOR

Two more methods actually put the information
about the objects and collections identified into the cursor.
They're AddObjectPropertyToTreeViewCursor, shown in
Listing 4, and AddCollectionPropertyToTreeViewCursor,
similar enough that the code is omitted here. Each of
them checks whether we've already added this item.
If not, it adds a record and then drills down, calling the
appropriate method.

Listing 4. AddObjectPropertyToTreeViewCursor adds a
property representing an object to the cursor and drills down.
LPARAMETERS oObject, cPropName, cParentKey, ;
 cParentType, cAlias, nLevel

LOCAL cLabel, cID, cItemType, nPage,
LOCAL cName, cRefID

IF PEMSTATUS(oObject, "Name", 5)
 cName = oObject.Name
ELSE
 cName = "UNNAMED"
ENDIF

March 2011 FoxRockX Page 9

cLabel = m.cPropName
cID = m.cParentKey + "/" + m.cPropName

* Check whether we've seen it before, and if
* so, categorize appropriately and avoid
* drilldown

cRefID = This.oItemsVisited.GetItemKey(;
 m.oObject)
IF NOT EMPTY(m.cRefID)
 cItemType = "Previous"
 nPage = 4
ELSE
 cItemType = "Class"
 nPage = 2
ENDIF

INSERT INTO (m.cAlias) ;
 (ID, PARENTID, PARENTTYPE, ;
 TYPE, TEXT, IMAGE, ;
 SORTED, PAGE, REFID, ;
 NODEKEY) ;
 VALUES ;
 (m.cID, m.cParentKey, m.cParentType, ;
 "PROPERTY", m.cLabel, m.cItemType, ;
 .F., m.nPage, m.cRefID, ;
 This.oTreeViewContainer.GetNodeKey(;
 "PROPERTY", m.cID))

IF m.cItemType = "Class"
 This.oItemsVisited.AddItemVisited(;
 m.oObject, m.cParentKey, m.cID, ;
 "PROPERTY")

 * Now add its members
 This.FindObjectPropertiesForTreeViewCursor(;
 m.oObject, m.cID, "PROPERTY", m.cAlias, ;
 m.nLevel + 1)
ENDIF

RETURN

Tracking what we've already seen
As I described above, in order to avoid infinite
recursion, we need a way to know that we've
already added an item to the cursor. What makes
this difficult is that we don't know anything about
the items themselves. Since this is a developer tool,
they can be anything at all. So we can't just grab
some natural identifier of the items and keep track
of that. Instead, we have to keep track of the items
themselves.

To do that, I created a class called cusItemVisited
with the following custom properties:

oObject: Holds a reference to the object •
we've visited;
cParentKey: The key in the treeview cur-•
sor for the parent of the object the first
time we encountered it;
cID: The ID for the object in the cursor;•
cType: The type of object.•

A collection class named colItemsVisited
holds the cusItemVisited objects. As you'd expect,
the AddItemVisited method creates and adds a
cusItemVisited object; the code is shown later in this
section (Listing 7), after discussing an alternative
approach.

The core method of the collection is GetItemKey
(shown in Listing 5); you pass an object and it
searches the collection to see whether the object is
there. If it is, it returns the key (composed of the
type and ID, separated by the character "~") for that
object.

Listing 5. The GetItemKey method of the colItemsVisited
collection lets you know whether a given object has already
been added to the cursor.
LOCAL oItem, lFound, cID, cType, cKey

lFound = .F.

FOR EACH oItem IN This FOXOBJECT
 IF oItem.oObject = m.oObject
 lFound = .T.
 cID = oItem.cID
 cType = oItem.cType
 EXIT
 ENDIF
ENDFOR

IF m.lFound
 cKey = TRIM(m.cType) + "~" + TRIM(m.cID)
ELSE
 cKey = ""
ENDIF

RETURN m.cKey

The code that calls this method (see, for
example, Listing 4) uses the returned key to figure
out what to do. If it's empty, the item isn't already
in the cursor, so the code adds it as the appropriate
type and then drills down. If the key is not empty,
we know that the object is already in the cursor,
so the item is added to the cursor with a type of
"Previous," which turns it into a backlink.

This strategy works and the tree is properly
populated. However, because it uses a brute
force search, for large hierarchies, it becomes
exceptionally slow. The application that led me to
build this tool can have thousands of items in the
hierarchy I want to display. Populating the cursor
was taking minutes.

So I came up with an alternate strategy.
However, because it involves modifying the objects
in the original object hierarchy, I made it optional.
The new approach adds a property containing the
key to every object it visits. Then, GetItemKey can
simply check for the presence of that property and
return its value, if it's there. The GetByKey method
looks up an item in the collection using its key.
Listing 6 shows the code in a separate branch of
GetItemKey that handles this. This code goes after
the initialization of lFound. The FOR loop goes into
the ELSE branch.

Listing 6. To speed up population of the treeview, you can
allow the tool to add a property to each object in the hierarchy.
This code in GetItemKey uses that property to quickly return
the key.
IF This.lAddToObject
 IF PEMSTATUS(m.oObject, ;
 "__cInspectorKey", 5)
 oItem = This.GetByKey(;
 oObject.__cInspectorKey)

Page 10 FoxRockX March 2011

 IF NOT ISNULL(m.oItem)
 cID = oItem.cID
 cType = oItem.cType
 lFound = .T.
 ENDIF
 ENDIF
ELSE
 * Continue with the brute force search shown
 * in Listing 5
ENDIF

To make this strategy work, of course, we need
code that adds the property to each object the first
time it's encountered. That code is in the AddItem-
Visited method. The complete code for that meth-
od, showing both approaches, is in Listing 7.

Listing 7. The AddItemVisited method of colItemsVisited
accepts information about an object in the hierarchy and adds
an item to the collection for that object. If the lAddToObject flag
is set, it also adds a property to the object to make it easier to
see whether we've already visited the object.
LPARAMETERS oObject, cParentKey, cID, cType

LOCAL oItem, cName
LOCAL cObjectKey

IF This.lAddToObject
 cObjectKey = This.GetNewKey()
 IF PEMSTATUS(m.oObject, ;
 "__cInspectorKey", 5)
 oObject.__cInspectorKey = m.cObjectKey
 ELSE
 ADDPROPERTY(m.oObject, ;
 "__cInspectorKey", ;
 m.cObjectKey)
 ENDIF
ENDIF

oItem = CREATEOBJECT("cusItemVisited", ;
 m.oObject, m.cParentKey, ;
 m.cID, m.cType)

IF This.lAddToObject
 This.Add(m.oItem, m.cObjectKey)
ELSE
 This.Add(m.oItem)
ENDIF

RETURN

By default, the Object Inspector uses the new
strategy, since it provides better performance. To
use the original strategy that leaves your objects
untouched, pass .T. for the optional third parameter
when calling the tool.

Filling the right-hand pane
As noted earlier, the sfExplorerFormTreeView class
contains code to display a particular page in the
right panel's pageframe in response to the user's
selection from the treeview. To take advantage of
this ability, I set PageCount to 4 for the pageframe
in the right pane.

Then, the main thing I needed to do was create
a container class to put on each of the pages. The
four different page types I identified were:

1: Collection•
2: Object•
3: Scalar item•
4: Back reference to an object elsewhere •
in the hierarchy

As I started to create the container classes, it
quickly became apparent that there was code I'd
need on every page, so I created a generic container
class with the necessary code and subclassed the in-
dividual containers from that one.

The key thing needed on every page is a way
to figure out what to display. I added a property,
oCurrentObject, to hold a reference to the relevant
object. The Refresh method contains just one line
of code, setting this property to the result of a call
to the custom ParseID method. ParseID, shown in
Listing 8, uses the form's cCurrentNodeID to build
a reference to the corresponding object.

Listing 8. When we land on a particular page of the
pageframe, we need to figure out what to display. This method
uses the form's ID for the current treeview node to figure out
what object it refers to.
LOCAL aLevels[1], nLevels, nLevel, ;
 cHierarchy, oObject

nLevels = ALINES(m.aLevels, ;
 ThisForm.cCurrentNodeID, "/")

cHierarchy = "ThisForm.oRoot"

FOR nLevel = 2 TO m.nLevels
 IF LEFT(aLevels[m.nLevel], 1) = "#"
 * It's an item in the current collection
 cHierarchy = m.cHierarchy + ".Item[" + ;
 SUBSTR(aLevels[m.nLevel], 2);
 + "]"
 ELSE
 * It's a property of the current object
 cHierarchy = m.cHierarchy + "." + ;
 ALLTRIM(aLevels[m.nLevel])
 ENDIF
ENDFOR

TRY
 oObject = EVALUATE(m.cHierarchy)
CATCH
 oObject = .null.
ENDTRY

RETURN m.oObject

The individual container classes contain very
little code. All except the back reference class
(cntBackReference) have additional code in Refresh
to gather the data to be displayed.

Both cntCollectionInfo (used on page 1) and
cntObjectInfo (used on page 2) contain a grid to
show the properties of the object and their values.
In both cases, Refresh calls a method of the grid to
fill it.

The grid is based on a class called grdProperties.
It has a custom method, CreatePropertyCursor,
called by the Init method. CreatePropertyCursor

March 2011 FoxRockX Page 11

creates a cursor with three columns and stores its
alias in a property, cCursorAlias. The key method
of the grid is FillPropertyCursor, shown in Listing
9, which accepts an object as parameter, uses
AMEMBERS() to get a list of the properties of the
object and fills the cursor with that list.

Listing 9. The FillPropertyCursor method of grdProperties
collects a list of properties of an object and puts them into a
cursor along with their values.
LPARAMETERS oObject

IF RECCOUNT(This.cCursorAlias) > 0
 ZAP IN (This.cCursorAlias)
ENDIF

LOCAL aProps[1], nPropCount, nProp,
LOCAL cValue, cType

This.oObject = m.oObject

IF NOT ISNULL(m.oObject)
 nPropCount = AMEMBERS(aProps, m.oObject, 0)
 FOR nProp = 1 TO m.nPropCount
 cType = TYPE("oObject." + aProps[m.nProp])
 IF m.cType <> "U"
 cValue = TRANSFORM(EVALUATE(;
 "oObject." + aProps[m.nProp]))
 ELSE
 cValue = ;
 "<Property could not be evaluated>"
 ENDIF

 INSERT INTO (This.cCursorAlias) ;
 VALUES (aProps[m.nProp], m.cType, ;
 m.cValue)
 ENDFOR
ENDIF

GO TOP IN (This.cCursorAlias)

RETURN

The grid also contains code to resize its columns
proportionally when the grid is resized.

Handling back references
As I described earlier, each object in the hierarchy
is fully displayed only once. If the same object is
referenced more than once in the hierarchy, all ref-
erences except the first show a simple message that
lets you jump to the original reference. Figure 2
shows an example.

cntBackReference contains a single label with
FontUnderline set to .T. and forecolor set to blue (0,
0, 255). The Click method of the label contains the
code shown in Listing 10, which gets the key for
the right item, makes sure it's expanded and then
selects it.

Listing 10. The Click method of the label on the Back Refer-
ence page finds the place in the treeview where the current
item is fully displayed and displays that node.
LOCAL cParentKey

cParentKey = ;
 ThisForm.GetKeyForCurrentNodeRefID()
ThisForm.ExpandAllParents(m.cParentKey)
ThisForm.oTreeViewContainer.SelectNode(;
 m.cParentKey)

RETURN

Getting the key for the right item is actually fairly
simple, because it's stored in the field I added to the
treeview cursor. So GetKeyForCurrentNodeRefID
just SEEKs the right record in the cursor and returns
its RefID field.

The treeview container method SelectNode
selects the item whose key you pass. However, it
only works if the item is current displayed. If the
specified node is in a portion of the tree that hasn't
been expanded, SelectNode doesn't do anything.

So I added a method to the form to expand
all the ancestor nodes of a specified node, starting
from the first unexpanded node and working
down to the parent node of the specified node.
ExpandAllParents is shown in Listing 11.

Listing 11. Before selecting an item in the treeview, we need to
ensure that it's displayed by expanding each of its ancestors.
LPARAMETERS cKey

LOCAL lExpanded, aKeys[1], nToBeExpanded,
LOCAL cAlias
* Work upwards from the key, until we find a
* node that was previously expanded.

lExpanded = .F.
cAlias = This.oTreeViewContainer.cCursorAlias

* Put the first item into the array
aKeys[1] = m.cKey
nToBeExpanded = 1

* Go to record for the specified key
SEEK m.cKey ORDER NODEKEY IN (m.cAlias)

DO WHILE NOT m.lExpanded

 TRY
 oItem = ;
 This.oTreeViewContainer.oTree.Nodes[;
 m.cKey]
 * If we're still here, the item exists and
 * thus must have been expanded.
 lExpanded = .T.

 CATCH
 * Find the parent of this item.
 cParentID = ALLTRIM(EVALUATE(;

Figure 2. When an object is referenced more than once in the
hierarchy, references after the first let you jump to the full dis-
play for the item.

Page 12 FoxRockX March 2011

 m.cAlias + ".ParentID"))
 IF SEEK(m.cParentID, m.cAlias, "ID")
 cKey = ALLTRIM(EVALUATE(;
 m.cAlias + ".NodeKey"))

 * Add this item to the list to expand
 nToBeExpanded = m.nToBeExpanded + 1
 DIMENSION aKeys[m.nToBeExpanded]
 aKeys[m.nToBeExpanded] = m.cKey

 ELSE
 * Get out of here. There's nothing more
 * we can do.
 lExpanded = .T.
 ENDIF

 ENDTRY
ENDDO

* Now go backwards through the array and
* expand
FOR nItem = m.nToBeExpanded TO 1 STEP -1
 This.oTreeViewContainer.TreeExpand(;
 aKeys[m.nItem], .T.)
ENDFOR

RETURN

Making the grid more useful
The properties grid shown on the Collection and
Object pages has several useful features. First, you
can double-click on the value of a property to open
a form showing the value in a larger editbox. The
editbox also provides its own value as a tooltip.
Finally, double-clicking or pressing Enter on any
property that's an object jumps to that object in the
treeview.

Zooming a property value takes advantage of
functionality Doug provided in his classes. I subclassed
Doug's sfEditBox class to create edtDynamicTooltip.
Doug's class has built-in zooming. All I had to do was
set the cZoomClass and cZoomLibrary properties to
point to Doug's sfEditBoxZoomForm class. I set the
cZoomFormCaption property to "Zoom PropertyValue."
Because I don't want users to try to edit the Values, I also
put code in the editbox's SetZoomFormProperties class
to make the zoomed editbox readonly.

Providing tooltips for the Value column, my
main reason for subclassing, was much harder. In
all versions of VFP except VFP9 SP1, only grid-level
tooltips display, rather than tooltips for the items
within the grid. To provide a tooltip based on the
editbox value requires code in the grid and the
editbox.

I added an Access method to the grid's
ToolTipText property; the code is shown in Listing
12. If the control in the column has a tooltip, it
returns that; if not and the column has one, it
returns the column's ToolTip.

Listing 12. This code in the grid's ToolTipText_Assign method
checks the column and the control in the column for a tooltip.
LOCAL cToolTip, aMousePos[1], oColumn, ;
 oControl

cToolTip = ""

IF AMOUSEOBJ(aMousePos) > 0
 oColumn = aMousePos[1]
 IF NOT ISNULL(m.oColumn) AND ;
 UPPER(oColumn.BaseClass) = "COLUMN"
 * First, grab column-level tip in case we
 * don't find something below
 cToolTip = oColumn.ToolTipText

 * Now, look for the right control. It
 * should be the last control.
 IF oColumn.Objects.Count > 0
 oControl = ;
 oColumn.Objects[oColumn.Objects.Count]
 IF NOT EMPTY(oControl.ToolTipText) OR ;
 PEMSTATUS(m.oControl, ;
 "ToolTipText_Access", 5)
 cToolTip = oControl.ToolTipText
 ENDIF
 ENDIF
 ENDIF
ENDIF

RETURN m.cToolTip

To return the contents of the Value column for
the row where the mouse is located requires an
Access method for the editbox's ToolTipText, as
well. Shown in Listing 13, it uses GridHitTest to
figure out which row we're over, sets focus to that
cell, and returns its value.

Listing 13. The editbox's ToolTipText_Access method figures
out which row we're in, and returns the right value.
LOCAL nRow, nCol
LOCAL nGridComp, nRelRow, nRelCol
LOCAL cTip

nRow = MROW(_screen.ActiveForm.Name, 3)
nCol = MCOL(_screen.ActiveForm.Name, 3)
This.Parent.Parent.GridHitTest(m.nCol, ;
 m.nRow, @nGridComp, @nRelRow, @nRelCol)

* Activate the relevant cell
This.Parent.Parent.ActivateCell(;
 m.nRelRow, m.nRelCol)
cTip = This.Value

RETURN m.cTip

To provide the ability to jump to an item from
the property in the grid, I added a method called
JumpToItem to the form. It's called from the
DoubleClick and KeyPress methods of the textbox in
the grid's Property column. JumpToItem, shown in
Listing 14, uses methods of the TreeViewContainer
object to find the right node and select it.

Listing 14. The form's JumpToItem method accepts the name
of a property of the currently displayed node and finds and
selects the corresponding child node.
LPARAMETERS cName

LOCAL oCurrentNode, oChildren, oChild, lFound

* Get info about current node
oCurrentNode = ;
This.otreeViewContainer.GetTypeAndIDFromNode(;
 This.otreeViewContainer.oSelectedNode)

March 2011 FoxRockX Page 13

* Get children of current node
oChildren = CREATEOBJECT("Collection")
This.oTreeViewContainer.GetChildNodes(;
 oCurrentNode.Type, oCurrentNode.ID, ;
 oChildren)

* Find the child we're interested in
lFound = .F.
FOR EACH oChild IN m.oChildren FOXOBJECT
 IF UPPER(oChild.Text) = UPPER(m.cName)
 lFound = .T.
 EXIT
 ENDIF
ENDFOR

IF m.lFound
 * Make sure current node is expanded
 This.oTreeViewContainer.TreeExpand(;
 This.otreeViewContainer.oSelectedNode, ;
 .T.)

 This.oTreeViewContainer.SelectNode(m.oChild)
ENDIF

RETURN

Since the grid always shows the properties of
the currently selected item, we know that the node
we want to select must be a child of that item. The
name of the property that points to the object is
passed as a parameter.

The method first gets identifying information
for the currently selected node. We then retrieve a
list of that node's child nodes. We loop through that
list to find the right node. If we find it, we make
sure the current node is expanded in the tree, and
then select the appropriate child.

Adding a toolbar
Adding a toolbar to the Object Inspector was easy.
The sfExplorerForm class includes cToolBarClass
and cToolbarLibrary parameters. Setting those to
point to my toolbar class was all I had to do to get
the toolbar displayed at the top.

To create the toolbar, I subclassed Doug's
sfToolbar class, and added the buttons I wanted,
based on the sfCommandButton class. In each case,
the code in Click is just a call to a custom method
of the form.

For the Go Back button, I also added code to
the Refresh method to disable it when the stack of
previous choices is empty.

Refreshing the Inspector
Once I had the toolbar available, refreshing the
treeview to reflect an updated object hierarchy
turned out to be easy as well. Refreshing is just
rebuilding the tree.

I added a custom RefreshTree method to the
form. It calls the TreeViewContainer's LoadTree
method and then refreshes the form.

Implementing "Go Back"
sfExplorerFormTreeView includes "Go Back"
functionality for the treeview, that is, the ability
to return to the previously selected node. So,
implementing it for the Object Inspector was just a
matter of connecting to the built-in code.

I added a method called GoBack to the form. It
calls the TreeViewContainer's GoBack method.

Lessons learned
Perhaps the key lesson from building the Object
Inspector is how much higher you can get when
standing on someone else's shoulders. Because I was
starting with a boatload of functionality, I was able
to focus on the specific needs of my project without
having to build all the necessary infrastructure.
Being able to add a toolbar or provide a zooming
editbox with no code was wonderful.

However, that doesn't mean it was always
easy. Working with someone else's code can be
challenging, even when it's documented as well
as Doug's (where there were not only comments
in the code, including a detailed About method
for each class, but the FoxRockX articles as well).
I spent a fair amount of time looking through
the list of methods, reading code and reviewing
documentation to figure out how to do some of the
things I needed.

In addition, as I often do, I used the Debugger
extensively to experiment along the way. Among
other things, those experiments led me to follow
the model of other VFP tools and create a public
variable (_oInspector) to point to the running
Inspector.

As I said in my last article, the Object Inspector
is a work in progress. In fact, I added functionality
in the course of writing this article. I hope my next
lessons will be about working with a community
team to improve a tool.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced
numerous Visual FoxPro applications for businesses
and other organizations. She currently focuses on
working with other developers through consulting and
subcontracting. Tamar is author or co-author of nearly
a dozen books including the award winning Hacker’s
Guide to Visual FoxPro, Microsoft Office Automation
with VisualFoxPro and Taming Visual FoxPro’s SQL.
Her latest collaboration is Making Sense of Sedna
and SP2. Her books are available from Hentzenwerke
Publishing (www.hentzenwerke.com). Tamar is a
Microsoft Support Most Valuable Professional and
one of the organizers of the annual Southwest Fox
conference. In 2007, Tamar received the Visual FoxPro
Community Lifetime Achievement Award. You can
reach her at tamar@thegranors.com or through www.
tomorrowssolutionsllc.com.

